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Trapped waves in the neighbourhood of a sonic-type 
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A model equation is derived to study trapped nonlinear waves with a turning effect, 
occurring in disturbances induced on a two-dimensional steady flow. Only unimodal 
disturbances under the short wave assumption are considered, when the wave front 
of the induced disturbance is plane. In  the neighbourhood of certain special points of 
sonic-type singularity, the disturbances are governed by a single first-order partial 
differential equation in two independent variables. The equation depends on the 
steady flow through three parameters, which are determined by the variations of 
velocity and depth, for example (in the case of long surface water waves), along and 
perpendicular to the wave front. These parameters help us to examine various relative 
effects. The presence of shocks in a continuously accelerating or decelerating flow has 
been studied in detail. 

1. Introduction 
Nonlinear hyperbolic waves in many dimensions have been the subject of many 

recent investigations. Of special significance is the case when unsteady unimodal 
disturbance waves are generated in a basic two-dimensional steady flow and are 
momentarily trapped at certain points in the flow. This occurrence is of interest, for 
example, in the transonic flow of a polytropic gas past an aerofoil or through con- 
verging or diverging nozzles. This could also occur in the case of long surface water 
waves over a sloping bottom. The case of transonic flow has been studied in great 
detail by Prasad (1973), Spee (1971) and Nieulwand & Spee (1968). The case of water 
waves has received little attention and it is to this study that we shall devote this 
paper. 

In  the above two cases, there are certain effects which play an important part in 
determining the nature of the flow and in the existence of continuously accelerating 
and decelerating flows through the speed of sound; these are tested below. 

( 1 )  The steepening of the waves, due to the nonlinearity present in the system. 
(2)  The trapping of waves, due to the presence of points in the flow field at  which all 

the components of the ray velocity approach zero. At these points, which are 
singularities of the sonic type, trapping occurs only when the normal to the wave 
front is in a privileged direction, namely in the direction of the streamlines of the 
steady flow a t  that point. 

(3) The turning of the wave front, due to the presence of velocity gradients along 
t>he wave front, namely in a direction perpendicular to the streamlines. This turning 
of the wave front contributes to its eventual release from the trapped position. 
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(4) The growth or decay of disturbances, due to inhomogeneity, such as favourable 
or adverse inclination of the bottom in surface water waves. 

These four effects, including their interaction, are investigated here in detail. The 
occurrence of shocks in continuously decelerating flows through a sonic-type singu- 
larity, their velocity of propagation, their growth or decay are dictated by the above- 
mentioned effects. 

I n  this paper, we derive an approximate equation, which governs the propagation 
of disturbance pulses moving slowly over a two-dimensional steady flow of long surface 
water waves in shallow water over a sloping bottom. However, the model equation 
derived here is very general and applicable to all hyperbolic genuinely nonlinear waves 
with turning effect in two space dimensions (including the transonic problem). Turning 
of the waves in transonic flow has been discussed by Prasad & Krishnan (1977) but 
the approximate model equation obtained by them is very complicated due to the 
presence of the curvature of the wave front. In  our analysis, we have assumed the wave 
front of the induced disturbance to be plane. This is not a major assumption, as the 
curvature can be combined with damping or growth of the disturbance due to the 
convergence or divergence of the rays; however the simplification in the analysis is 
considerable and the resulting model can be studied analytically. We restrict our 
attention to those disturbances which are confined in the neighbourhood of a wave 
front (short-wave approximation), especially around singularities of the sonic type, 
where the normal to the wave front is in the direction of the stream line. These distur- 
bances are governed by a single first-order partial differential equation in two inde- 
pendent variables (cf. Prasad (1973) in the case of transonic flows without turning 
effects considered), which lends itself to a detailed study. The equation depends on the 
steady flow through three parameters, which depend on the variations of velocity and 
depth both along and perpendicular to the wave front. These parameters help us to 
study the relative effects of turning of the wave front and increasing or decreasing depth 
of the bottom. The area of the disturbance in the phase plane associated with the 
characteristic equations of the governing partial differential equation grows or decays 
with time depending on whether the depth is decreasing or increasing normal to the 
wave front. The presence of shocks in a continuously accelerating or decelerating flow 
has been studied in detail. 

2. Equations governing the motion and derivation of the model equation 
Let u,, w,, a,, yo all of which are functions of x and y describe the steady flow of a 

fluid in shallow water over a sloping bottom. Here q = [uo, vO] is the fluid velocity in the 
(x, y) plane perpendicular to the height, r0 is the height of the fluid over the still water 
level and a, = (yo + h)t  is the undisturbed sound velocity in the fluid. 

The equations satisfied by u,, w, and yo in the long wavelength limit are (in terms 
of non-dimensional quantities) : 

and 
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Let 

denote a perturbation of the steady flow, where the quantities with subscript 1 are of 
an-order of magnitude, say 6, smaller than those with subscript 0. The above quantities 
give a first-order approximation to the flow. Neglecting terms of O(S2), the system of 
equations in matrix form governing ul, w1 and 7, is found to be: 

au au au 
at ax ay 

-+A-+B- = C,  

where uo + u1 0 

TO+Tl+h 0 u,+u, 

1 wo + W l  0 0 - ~ 1 ~ o . E - ~ 1 ~ o y  

- Tl(U0.Z + ?Joy) 

- UlW02 - %Way 
0 T0+7l+h v,+v, - u1 hr - w1 hv - u1 Tor  - 01 Tov 

B = [  0 wo+v, 

The above system is hyperbolic with t as a time-like variable. If n,, n2 represent the 
direction cosines of a normal to the wave front a t  t = constant, then the characteristic 
velocities of the system are distinct and are given by 

c1 = un, + wn,, c2, = un, + wn2 T a. (7) 

We restrict ourselves in this study to disturbances which are confined in the neigh- 
bourhood of a particular characteristic surface, say, #(x, y, t )  = 0 given by 

(8) #t + ,u#z + w$, + a(#: + = 0. 

We note that n, and n2 are given by 

and satisfy nf + ni = 1. In terms of the angle 8, which the normal to the wave front 
makes with the positive x-axis 

The equation to a bicharacteristic curve on this surface is given by (Prasad 1975) 

= cost?, n2 = sine. (10) 

where 

or equivalently 

at 
v+n,a, -- - 1, -u+n,a ,  -= -- ax dY 

afl, dU1 aa1 
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Equation ( 1 2 )  helps to determine n,, n2 as functions of x and y, when they are specified 
initially at  t = 0. We introduce a set of new variables w,, w2,  w3 by the relation 

where the columns in the matrix of transformation is the set of linearly independent 
right eigenvectors corresponding to the characteristic velocities c3, c2 and c,, 
respectively. Here we are interested only in disturbances which consist of a single 
mode confined in the neighbourhood of a characteristic surface (or a moving wave 
front with velocity c3).  We further make the short wave assumption, namely that the 
disturbance is non-zero over a distance of order 8 from the wave front, where 6 is small 
compared to the characteristic length of the problem. Following Prasad (1975), we can 
show that in the neighbourhood of the Characteristic surface (8), 

w2, w3 < (0, = O(6).  (14) 

The system of equations ( 5 )  together with the transformation ( 1 1 )  reduces to the 
following equation in the neighbourhood of $(x, y , t )  = 0, under the short-wave 
assumption ( 14) : 

where 

- + $wl n, - + n2- w, = Kwl, 

a a  a a 

dg0 ( :x ;) 
-- - - + ~ ~ o + a o n l ) ~ + ~ v o + a o ~ 2 ~ -  
ago at a Y  

and 

d/duo denotes derivation along a zeroth-order bicharacteristic of the system ( 5 )  given 
by equations (11) and (12 ) .  

In particular, we now concentrate our attention on the study of the motion of the 
wave in the neighbourhood of certain special points, namely those at which both 
components of the ray (or bicharacteristic) velocity vanish. A t  these points, denoted 
by (x*, y*), we have 

u$ +a,*n, = 0, v,*+a,*n, = 0 (18a) 

(* above a quantity denoting its value at the point (x*, y*)), so that the normal to the 
wave front is in the direction of the streamline at  that point, i.e. 

From equation (15) we notice that at those points (x*, y*), when n, and n2 are given by 
(18b),  the velocity of propagation of the disturbance approaches zero and the wave is 
temporarily trapped. Only these waves will be trapped at  sonic points when the wave 



Trapped waves near a sonic-type singularity 469 

fronts are normal to  the streamlines. To study these trapped waves, when the wave 
front is assumed plane, we transform to new variables: 

where 6, C are co-ordinates perpendicular to  and along the wave front. If, a t  t = 0, nl(0) 
and nz(0) are given by (18b), then a t  subsequent times nl ( t ) ,  nz(t) denote the rotation 
of the wave front about the original trapped configuration. As we are confining our- 
selves to  the neighbourhood of  special points (%*, y*) specified by (18a), we can 
simplify equation (15) by setting 

1 uo = u: + 5u& + C@t;, 

210 = vo*+gv,*~+Cv;p 
a, = a,* +[a,*$ + CaZC, 

where terms of O(c2)  and 0(c2) have been omitted. Also for small times t ,  

where terms of O(t3) have been omitted. The reason for retaining terms up to O(t2) in 
(21) and only up to  O(6,  5) in (20) can be justified in the following way. 

The rotation of the wave front about the trapped configuration is specified by 
equations (12). I n  the neighbourhood of (x*, y*), we get 

Therefore 8 - 8: = O(t )  for small values oft ,  where 8: is the undisturbed value of 8 a t  
(z*, y*). However, (3” = u,* +aznl = o+a,*tnl(o), 

J 
(23) 

and this gives us x-x* = O(t2), y-y* = O(t2), (24) 

so that (x - x*) and (y - y*) are of O(t2) for small values o f t .  So, if we retain terms up to 
O(5) in (20), we shall have to retain terms up to O(t2) in (21), where 

Using equations (20) and (21), equation (15) simplifies to  
t 2  = O(6). (25)  
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Under the short-wave assumption, we require that the variation of w1 with c, 5 and t' 
are such that awl/ac is the most prominent. This implies that w1 varies more rapidly 
perpendicular to the plane wave front than along it. Other quantities being of 
comparable order, we neglect terms containing awl/ac in comparison with aw,/ag. 
Suitably scaling w,, 6 and t' and neglecting higher-order terms, w1 is then governed by 

where all barred quantities are of order one. The derivatives of n, and n2 can be 
calculated using the ray equations (12). After some lengthy computation, we obtain 

where 

where aq,*/at represents the space rate of change of the fluid speed at the point (x*, y*) 
as we move along the streamline in the steady solution, and is equal to the acceleration 
of the fluid element divided by a,*. 

We observe the following: 
(1) When the variation in depth in the direction of the streamline (i.e. perpendicular 

to the wave front) is zero, then IZ = -ct and the number of parameters is reduced. 
This is observed in the case of transonic flow by Prasad (1973). 

(2) The turning effect of the wave front is represented by the parameter Ct, which 
depends on the gradient of the steady flow perpendicular to the streamlines. If this 
were zero (i.e. the quantities in steady flow did not vary along the wave front), then 
there is no turning of the wave front. 

3. Solution and discussion of results 
Equation (28) is a single first-order partial differential equation in two independent 

variables and its solution W,(E, i') satisfying suitable initial conditions can be obtained 
easily. Writing the characteristic equations associated with equation (28), we can 
solve for 0, and 5 in terms of P and two parameters z,, and E,. o,, represents the value 
of W, at the point (E,, 0) on the g-axis in the ( E ,  t') plane where the characteristic curve 
through ( E ,  f') meets the initial line if = 0. Omitting bars, we have 

w1 = wlOeKt', 

The basic undisturbed solution is represented in the (w,, 5) plane by the line w1 = 0. 
We consider perturbations bounded in space, namely those represented in the (w,, t)  
plane by a closed curve, a part of whose boundary is the line w1 = 0. In  a perturbation, 
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the space rate of change of w1 as we move with wave velocity ( & ~ ~ + 6 ~ c + C ~ t ’ ~ )  is 
Kwl/ (&Jl+Cgc+Ct t ’2) .  If S is the area bounded by an arbitrary closed curve in the 
(wl, c )  plane, whose points move in accordance with equation ( 2 8 ) ,  then 

If hg*/2a$ < 0, the disturbed area grows exponentially with time, whereas for 
h$/2a$ > 0 it decays rapidly. When the depth of the bottom does not vary along the 
streamline (i.e. hf /2a$-  = 0 ) ,  the constant area rule applies. 

If we prescribe the initial shape of the pulse at t’ = 0 by the function 

@1(67 ‘1 = w10(!%)2 

then a t  any other time t’, the slope of the pulse can be obtained in terms of the initial 
slope do l0 /d ( ,  at the point to (i.e. the point on t’ = 0 through which the character- 
istic of equation ( 2 8 )  from ((, t ’ )  passes) by the relation: 

Case 1. K -C, > 0, i.e. aq$-/ac > h f / 2 a t ,  i.e. the acceleration of the fluid element is 
greater than half the variation of h along the streamline. In  this case, if the initial slope 
d w l o / d ~ ,  were negative, then the slope awl/af; at time T would become infinite, provided 

Thereafter the profile would fold. So a shock wave always appears in this case $rst at 

If the initial slope were positive, then the denominator in ( 3 2 )  would never vanish and 
no shock wave will form. As t + 00, 

awl/af; + Q(K - CJ. (34) 

Case 2 .  K -C, < 0, i.e. aq$/a[ < h f / 2 a $ ,  i.e. the acceleration of the fluid element is 
less than half the variation of h along a streamline. In this case 

The denominator vanishes only if dwlo/dto is a sufficiently large negative quantity, 
namely 

Otherwise the slope never becomes infinite, namely no shock is formed. The presence 
of positive (Cg - K )  retards the nonlinear steepening leading to a shock and, unless the 
initial negative slope is sufficiently steep, a shock will not form. As t tends to infinity, 
the slope tends to zero everywhere. 
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5 
FIGVRE 1 .  A plot of w1 ws. 6 before the formation of a shock. h, positive tends to hasten shock 
formation and reduce the disturbed area. h, negative tends to delay shock formation and 
increase the disturbed area. - ----, 5, = 0, C, = 0 ;  - - -, h, = - +, C ' t  - - 0; - , hg = 1, 
C, = 0. K = 1.0, t = 0.4. 

- 

Case 3. K-C5 = 0 or c?qt/ac = hT/2a,*. In  this case a shock will form only if the 
initial slope is negative. The shock appears first a t  time T given by 

Once a shock forms, its motion can be followed by using the result that  for a weak 
shock its velocity is the arithmetic mean of characteristic velocibies just ahead and 
just behind the shock. The shock position tg satisfies the equation 

2 = C&+ 2{%(tS> t )  + o,c6s, t )} .  (38) 

We have studied case I in detail numerically and shown the results with the help of 
graphs, starting with an initial parabolic profile in the (wl, 6) plane. This initial profile 
has the maximum of its negative slope a t  the leading edge, so that shock will first 
appear a t  the leading edge. We have drawn the profiles in three cases, namely 
z 5 -  - h* 6 /  2a* 0 = 0, h, = - 6 and h, = 1 .  We have chosen K = 1 so K - C, is positive in all 
three cases. Before the formation of the shock a t  t = 0.4 (figure l) ,  the maximum 
amplitude in all three cases is almost the same and occurs a t  nearly the same value of 5. 
The effect of non-zero C, is to shift the graph to the right by an extremely small amount, 
as can be verified from equation (28). Depending on whether zc is positive, negative or 
zero, the area of the disturbance in (q, g) plane decays, grows or remains constant, 
respectively, with time. The shock appears a t  the leading edge a t  an earlier time in the 
case when A, is positive and later when z5 is negative when compared to  that when 
& = 0 (table 1). The presence of C, has no influence on the time at which the shock 
begins to form [cf. equation (33)]. After formation, the shock first begins to move 
backwards and then moves forward with a greater shock velocity when z5 is negative, 
than when z5 is zero (see figure 2 ) .  When z, is positive, the shock continues to move 
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E 
FIGURE 2. A plot of w1 vs. 5 after the formation of a shock. E ,  positive tends to lessen the ampli- 
tude of the shock and causes it to move in the backward direction. 5, negative tends to increase 
the amplitude of the shock and causes it to move faster in the forward direction. = 0, c 1 -  - o . - - -  9 , E - - -4, c t -  - 0; -.-.- , E, = 1 ,  c1 = 0.  K = 1.0, t = 1.0. 

- 0.25 0 0.25 - 0.25 0 0.25 0.50 

E t 
FIGURE 3. The effect of C, is to cause the shock to move faster in the forward direction. It does 
not have any appreciable effect on the amplitude of the shock. ( 1 )  E ,  = 0, C, = 0 ;  (2) K, = 0, 
C, = 0.1; (3) 
K = 1.0, t = 1.0. 

= -4, C, = 0 ;  (4) %5 = -4, C, = 0.1; ( 5 )  Fit = 1 ,  Ct = 0 ;  (6) = 1, Ct = 0.1. 

backwards. The amplitude of the shock increases steadily with time when zL is negative 
or zero, but decreases when z5 is positive. The effect of C, is to give an added shock 
velocity in the forward-moving direction, as seen in figures 3 and 4, a t  times t = 1.0 and 
t = 1.7, respectively. Even when zt is positive, after a certain time the effect of C, is to 
cause the shock to move forward instead of backward. The amplitude and the base 
width of the triangular form of the shock are hardly affected by the presence of C,. The 
area rule of the disturbance can be verified from table 1. At t = 1-7, the disturbance in 
all three cases has taken a triangular form, which will persist for all later times. 
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E 
FIGURE 4. The combined effect of ?ig and C, on the amplitude and velocity 

of the shock. K = 1.0, t = 1.7. For key to numbers see figure 3. 

Regarding the nonlinear stability of the flow, we can conclude that, when xc = 0 and 
-$, the flow is unstable, whereas, for hs = 1, the flow is stable as the disturbance 
shrinks rapidly with time. 
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